Accu-Glass

FLUSH DEVICE APPLICATION GUIDE

APPLICATIONS

- Disposable Blood Pressure Transducers (DPT)
- Fast Saline Flush Devices
- Prevention of excessive fluid flow rates during flushing or blood pressure monitoring.

FEATURES

- Precisely controlled saline flow rate to prevent over or under infusion through tube sets
- Rapid passage of air during device setup
- Does not require power, electronic or software control
- Clean, precise all-glass material
- Flow rate accuracy better than ISO-28620

BENEFITS

- Unmatched reliability for stable pharmaceutical flow control
- Precision central bore holds over a wide range of temperatures and conditions
- 100% automated flow testing available
- Designed to meet your specific flow rate, rather than dimensional controls
- Long-term stability with the ability to withstand aggressive sterilization methods

Choosing a Flow Restrictor for a Flush Device

Flow Rate

The flow rate of a restrictor is determined by the central bore diameter and the pressure differential. Our flow restrictors accommodate flow rates as low as 0.06 mL/Hr at 100 mm Hg pressure differential, and higher than 1400 mL/Hr at higher pressures.

Our available 100% flow rate testing ensures accuracy will within ISO-28620 requirements.

Length

We economically produce lengths of 8 mm and 9.5 mm at high volume. We can also accommodate custom lengths.

Material Type

The most typical glass type for flow restrictors is EP (3.2.1B) / USP <660> Type III Soda lime glass. We produce restrictors using Type I borosilicate for specific applications.

These glasses have high chemical resistivity and exceptionally low rates of thermal expansion.

Bonding

A range of sealing or bonding methods can be used to mount our flow restrictors. These include silicone Orings and a variety of UV curable adhesives.

Sterilization

Our glass may be sterilized by a range of methods, including Ethylene Oxide, radiation, moist heat, dry heat, vaporized hydrogen peroxide, or gas plasma. This robustness enables ensures that the glass will not limit flexibility in choosing the final product's sterilization

20210818-01

AR-GLAS®	Technical Data		
Glass Type/Application	soda-lime glass Pharmaceutical primary packaging, general technical application		
Physical Data (approx. value)	Coefficient of mean linear thermal expansion α(20°C; 300°C) acc. to ISO 7991		
(αρριοχ. value)	Transformation Temperature T _g		
	Glass temperature at viscosity η in dPa · s $10^{13} \text{ (annealing point)} 530 °C$ $10^{7.6} \text{ (softening point)} 720 °C$ $10^{4} \text{ (working point)} 1040 °C$		
	Density ρ at 25°C		
Chemical Data	Hydrolytic resistance		
	Alkali resistance (ISO 695)		
	ASTM E 438 Type II		
Chemical Composition (main components in approx. weight %)	SiO ₂ B ₂ O ₃ Al ₂ O ₃ Na ₂ O K ₂ O BaO CaO MgO 69 1 4 13 3 2 5 3 The heavy metal content for the elements lead, cadmium, mercury and hexavalent chromium is below 100 ppm.		

Corning® 51-A Tubing

CORNING

Chemical and Physical Characteristics for Corning® 51-A Amber Borosilicate Glass Tubing

Oxide Component	Symbol	Corning [®] 51-A Tubing
Silicon Dioxide	SiO₂	70.2
Boron Oxide	B ₂ O ₃	10.5
Aluminium Oxide	Al ₂ O ₃	5.8
Calcium & Magnesium Oxide	CaO + MgO	1.0
Sodium Oxide	Na ₂ O	5.8
Potassium Oxide	K ₂ O	1.3
Iron Oxide	Fe ₂ O ₃	1.0
Barium Oxide	ВаО	1.4
Titanium Dioxide	TiO.	3.0

Table 2: Chemical Resistance Classifications				
Hydrolytic Resistance (Glass Grain)	EP (3.2.1B) / USP <660>	Type 1		
Hydrolytic Resistance (Glass Grain)	ISO 720	HGA1		
Soluble Alkali Test	JP 7.01	Complies		
Acid Resistance Class	DIN 12116	Class S1		
Alkali Resistance Class	ISO 695	Class A2		
ASTM Laboratory Glass Class	ASTM E 438	_		

Table 3: Physical Properties			
Name	Unit	Corning® 51-A Tubing	
Average Linear T.E.C.	10 ⁻⁷ K ⁻¹	52	
Density	g cm ⁻³	2.36	
Relative Refractive Index	(number) *	1.50	